Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415863

RESUMO

Water scarcity, resulting from climate change, poses a significant threat to ecosystems. Syntrichia ruralis, a dryland desiccation-tolerant moss, provides valuable insights into survival of water-limited conditions. We sequenced the genome of S. ruralis, conducted transcriptomic analyses, and performed comparative genomic and transcriptomic analyses with existing genomes and transcriptomes, including with the close relative S. caninervis. We took a genetic approach to characterize the role of an S. ruralis transcription factor, identified in transcriptomic analyses, in Arabidopsis thaliana. The genome was assembled into 12 chromosomes encompassing 21 169 protein-coding genes. Comparative analysis revealed copy number and transcript abundance differences in known desiccation-associated gene families, and highlighted genome-level variation among species that may reflect adaptation to different habitats. A significant number of abscisic acid (ABA)-responsive genes were found to be negatively regulated by a MYB transcription factor (MYB55) that was upstream of the S. ruralis ortholog of ABA-insensitive 3 (ABI3). We determined that this conserved MYB transcription factor, uncharacterized in Arabidopsis, acts as a negative regulator of an ABA-dependent stress response in Arabidopsis. The new genomic resources from this emerging model moss offer novel insights into how plants regulate their responses to water deprivation.

2.
Indian J Dermatol ; 67(4): 404-408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578708

RESUMO

Oral melanoacanthoma is an uncommon reactive lesion, characterized by basal and prickle cell keratinocyte proliferation surrounded by pigment-laden dendritic melanocytes. Plasma cell cheilitis (PCC) is an inflammatory disorder of unknown aetiology, microscopically presenting a dense plasma cell infiltrate. Most PCC cases affect the lower lip. Langerhans cell hyperplasia (LCHyp), a non-neoplastic counterpart of the LC proliferations, has been reported in association with chronic inflammatory skin diseases. Here, we present an unusual association of melanoacanthoma, PCC and LCHyp on the lower lip in a 59-old-year male, expanding the clinicopathological spectrum of these uncommon lesions. The dendritic melanocytes were highlighted by Fontana-Masson stain and HMB-45, whereas S100, CD1a and CD207 evidenced numerous LCs. MUM1/IRF4, EMA, and CD138 highlighted sheets of polyclonal plasma cells, with an IgG4+/IgG+ ratio of 24%. FTA-ABS test for syphilis was negative.

3.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082155

RESUMO

Desiccation tolerance is an ancient and complex trait that spans all major lineages of life on earth. Although important in the evolution of land plants, the mechanisms that underlay this complex trait are poorly understood, especially for vegetative desiccation tolerance (VDT). The lack of suitable closely related plant models that offer a direct contrast between desiccation tolerance and sensitivity has hampered progress. We have assembled high-quality genomes for two closely related grasses, the desiccation-tolerant Sporobolus stapfianus and the desiccation-sensitive Sporobolus pyramidalis Both species are complex polyploids; S. stapfianus is primarily tetraploid, and S. pyramidalis is primarily hexaploid. S. pyramidalis undergoes a major transcriptome remodeling event during initial exposure to dehydration, while S. stapfianus has a muted early response, with peak remodeling during the transition between 1.5 and 1.0 grams of water (gH2O) g-1 dry weight (dw). Functionally, the dehydration transcriptome of S. stapfianus is unrelated to that for S. pyramidalis A comparative analysis of the transcriptomes of the hydrated controls for each species indicated that S. stapfianus is transcriptionally primed for desiccation. Cross-species comparative analyses indicated that VDT likely evolved from reprogramming of desiccation tolerance mechanisms that evolved in seeds and that the tolerance mechanism of S. stapfianus represents a recent evolution for VDT within the Chloridoideae. Orthogroup analyses of the significantly differentially abundant transcripts reconfirmed our present understanding of the response to dehydration, including the lack of an induction of senescence in resurrection angiosperms. The data also suggest that failure to maintain protein structure during dehydration is likely critical in rendering a plant desiccation sensitive.


Assuntos
Adaptação Fisiológica/genética , Poaceae/genética , Dessecação/métodos , Genômica/métodos , Folhas de Planta/genética , Proteínas de Plantas/genética , Água/metabolismo
4.
Plant J ; 105(5): 1339-1356, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33277766

RESUMO

With global climate change, water scarcity threatens whole agro/ecosystems. The desert moss Syntrichia caninervis, an extremophile, offers novel insights into surviving desiccation and heat. The sequenced S. caninervis genome consists of 13 chromosomes containing 16 545 protein-coding genes and 2666 unplaced scaffolds. Syntenic relationships within the S. caninervis and Physcomitrella patens genomes indicate the S. caninervis genome has undergone a single whole genome duplication event (compared to two for P. patens) and evidence suggests chromosomal or segmental losses in the evolutionary history of S. caninervis. The genome contains a large sex chromosome composed primarily of repetitive sequences with a large number of Copia and Gypsy elements. Orthogroup analyses revealed an expansion of ELIP genes encoding proteins important in photoprotection. The transcriptomic response to desiccation identified four structural clusters of novel genes. The genomic resources established for this extremophile offer new perspectives for understanding the evolution of desiccation tolerance in plants.


Assuntos
Briófitas/genética , Dessecação , Genômica/métodos , Estresse Fisiológico , Transcriptoma/genética
5.
Mol Biol Evol ; 33(5): 1158-63, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26912813

RESUMO

The historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic hourglass has nevertheless been identified in the model plant Arabidopsis thaliana Here, we investigated whether plant hourglass patterns are also found postembryonically. We found that the two main phase changes during the life cycle of Arabidopsis, from embryonic to vegetative and from vegetative to reproductive development, are associated with transcriptomic hourglass patterns. In contrast, flower development, a process dominated by organ formation, is not. This suggests that plant hourglass patterns are decoupled from organogenesis and body plan establishment. Instead, they may reflect general transitions through organizational checkpoints.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Desenvolvimento Vegetal/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...